paper archives

Stay hungry, stay foolish. You are as good as your last paper.

ACS Applied Nano Materials 2018, 1(12), 7006-7015

1T-Phase Tungsten Chalcogenides (WS2, WSe2, WTe2) Decorated with TiO2 Nanoplatelets with Enhanced Electron Transfer Activity for Biosensing Applications

Layered transition metal dichalcogenides (TMDs) have received a great deal of attention due to fact that they have varied band gap, depending on their metal/chalcogen composition and on the crystal structure. Furthermore, these materials demonstrate great potential application in a myriad of electrochemical technologies. Heterogeneous electron transfer (HET) abilities of TMD materials toward redox-active molecules occupy a key role in their suitability for electrochemical devices.; Herein, we introduce a promising biosensing strategy based on improved heterogeneous electron transfer rate of WS2, WSe2, and WTe2 nanosheets exfoliated using tert-butyllithium (t-BuLi) and n-butyllithium (n-BuLi) intercalators decorated with vertically aligned TiO2 nanoplatelets. By comparison of all the nanohybrids, decoration of TiO2 on t-BuLi WS2 (TiO2@t-BuLi WS2) results in the fastest HET rate of 5.39 X 10(-3) cm s(-1) toward ferri/ferrocyanide redox couple. In addition, the implications of decorating tungsten dichalcogenides (WX2) with TiO2 nanoplatelets in enzymatic biosensor applications for H2O2 detection are explored. TiO2@t-BuLi WS2 outperforms all other nanohybrid counterparts and is demonstrated to be an outstanding sensing platform in enzyme-based biosensor with wide linear range, low detection limit, and high selectivity. Such conceptually new electrocatalytic detection systems shall find the way to the next generation biosensors.

Related Papers

Follow Us

Get in touch